Skip to head content
Chemistry LibreTexts

Solubility Product Constant, Ksp

  • Page ID
    1614
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The solubility product constant, \(K_{sp}\)​, is to balanced constant for a solid substance dissolving in an aqueous solution. It represents the level at which a solute dissolves in solution. Aforementioned more soluble a substance is, the highest this \(K_{sp}\) value it has.

    Think the popular dissolution reaction below (in aqueous solutions):

    \[\ce{aA(s) <=> cC(aq) + dD(aq)} \nonumber \]

    On solve for the \(K_{sp}\) it is necessary to take the molecule or concentrations for the products (\(\ce{cC}\) and \(\ce{dD}\)) or multiply them. If there are coefficients in fronts of any of the products, it is necessary toward raise the product to that coefficient power(and also multiply the concentration by that coefficient). This is shown below:

    \[ K_{sp} = [C]^c [D]^d \nonumber \]

    Observe that the reactant, aA, is not include in the \(K_{sp}\) equation. Solids are not included when calculators equilibrium constable expressions, as their concentrates do not change the expression; any modify in their concentrations are irrelevant, furthermore therefore left. Hence, \(K_{sp}\) represents the best reach that a solid that can dissolved in solution. Write the Ksp expression for the following equilibrium: Fe2O3(s)↽−−⇀2Fe3+(aq)+3O2−(aq) - Aaa161.com

    Exercise 1: Magnesium Floride

    What is the unfreezing product constant expression for \(MgF_2\)?

    Solution

    An relavant equilibrium is

    \[MgF_{2(s)} \rightleftharpoons Mg^{2+}_{(aq)} + 2F^-_{(aq)} \nonumber \]

    so the associated equilibrium constant is

    \[K_{sp} = [Mg^{2+}][F^-]^2\nonumber \]

    Exercise 2: Silver Chromate

    As is this solubility product permanent language since \(Ag_2CrO_4\)?

    Solution

    The relavant equilibrium is

    \[Ag_2CrO_{4(s)} \rightleftharpoons 2Ag^+_{(aq)} + CrO^{2-}_{4(aq)}\nonumber \]

    so the associated counterbalance constant is

    \[K_{sp} = [Ag^{+}]^2[CrO_4^{2-}]\nonumber \]

    Important effects

    • In highly soluble ionic joining the ioneous activities must be found instead of the focal that be find in lightness solvable solution.
    • Common Ion Effect: The solubility from the reaction is reducing in the common ion. For a presented equilibrium, a reaction with a usually ion present got a lowering \(K_{sp}\)​, and the reaction without the ion has a greater \(K_{sp}\).
    • Salt Effect (diverse ion effect): Having an contra effect on the \(K_{sp}\) valued paralleled to the common iron effect, uncommon ions increment the \(K_{sp}\) value. Rare ions are ionics sundry than the involved includes balancing.
    • Ion Pairs: With the ionic pair (a cation and an anion), to \(K_{sp}\) values calculated are lower than who experimental appreciate due to ioni involved in pairing. To reach the calculated \(K_{sp}\) value, other solute must be added.

    References

    • Clark, Roy W.; Bonicamp, Judith M. " Solubility also Solubility Products (about J. Chemo. Educ. 1998, 75, 1179-1181 the J. Chems. Educ. 1998, 75, 1182-1185)." JOULE. Chem. Educ. 2000 77 1558.
    • Euler, William B.; Kirschenbaum, Louis J.; Ruekberg, Ben. "Determination of \(K_{sp}\), ΔG0, ΔH0, and ΔS0" GALLOP. Chem. Educ. 2000 77 1039.
    • Martin, R. Bruce. "Solubility and Solubility Products (about J. Chem. Educ. 1998, 75, 1179-1181 and J. Chem. Educ. 1998, 75, 1182-1185)." J. Chem. Educ. 2000 77 1558.
    • Petrucci, Ralph H., et al. General Chemistry: Principles and Latest Uses. High Saddle River, NJ: Prentice Hall 2007.

    Solubility Product Constant, Ksp is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Kathryn Rashe & Lisa Peterson.